Гоникова Залина Залимгериевна

ИССЛЕДОВАНИЕ РЕГЕНЕРАТОРНОЙ АКТИВНОСТИ ОБЩЕЙ РНК КЛЕТОК КОСТНОГО МОЗГА НА ЭКСПЕРИМЕНТАЛЬНЫХ МОДЕЛЯХ ПЕЧЕНОЧНОЙ НЕДОСТАТОЧНОСТИ

14.01.24 – трансплантология и искусственные органы 14.03.03 – патологическая физиология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена в Федеральном государственном бюджетном научном учреждении «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Министерства здравоохранения Российской Федерации

Научные руководители:

Доктор биологических наук, профессор Доктор медицинских наук, профессор

Севастьянов Виктор Иванович

Онищенко Нина Андреевна

Официальные оппоненты:

Кирпатовский Владимир Игоревич - доктор медицинских наук, профессор, главный научный сотрудник Научно-исследовательского института урологии и интервенционной радиологии имени Н.А. Лопаткина - филиал Федерального государственного бюджетного учреждение «Национальный медицинский исследовательский центр радиологии» Министерства здравоохранения Российской Федерации.

Трубицына Ирина Евгеньевна - доктор медицинских наук, заведующая лабораторией доклинических исследований Государственного бюджетного учреждения здравоохранения «Московский Клинический Научный центр имени А.С. Логинова» Департамента здравоохранения города Москвы.

Ведущая организация: Федеральное государственное бюджетное учреждение «Государственный научный центр Российской Федерации — Федеральный медицинский биофизический центр имени А.И. Бурназяна».

Защита состоится «10» сентября 2019 года в 15^{00} часов на заседании диссертационного совета Д 208.055.01 ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов им. ак. В.И. Шумакова» Минздрава России по адресу: 123182, Москва, ул. Щукинская, д.1

С диссертацией можно ознакомиться в библиотеке ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов им. ак. В.И. Шумакова» Минздрава России и на сайте http://transpl.ru.

Автореферат разослан	«	_>>		2019	Γ.
----------------------	----------	-----	--	------	----

Ученый секретарь Диссертационного совета Д 208.055.01 кандидат ветеринарных наук

Е.А. Волкова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

Возрастающая во всем мире численность больных с острой и хронической печеночной недостаточности, ранняя инвалидизация и высокая смертность ставят проблему лечения таких больных в число актуальных проблем современной медицины. В России, как и во всем мире, летальность при острой и хронической печеночной недостаточности также не снижается и колеблется от 50 до 70-90% [Ивашкин В.Т. и др., 2006; Рахманова А. Г. и др., 2006; Friedman S.L. et al., 2008]. По данным ВОЗ прогнозируется [Плеханов А.Н. и др., 2016], что смертность от заболеваний печени в предстоящие 10-20 лет возрастет более чем в 2 раза. К настоящему времени стало очевидным, что трансплантация печени, будучи самым эффективным методом лечения острой и хронической печеночной недостаточности из-за дефицита донорских органов не может обеспечить всех нуждающихся в ней. Рассматривая высокую летальность при острой и хронической печеночной недостаточности как следствие нарушения процессов регенерации в поврежденной печени, надежду на повышение эффективности лечения этих состояний стали связывать с регенерационной медициной, основанной на применении клеточных технологий. В эксперименте и клинике начали осуществлять трансплантацию сначала клеток донорской печени [Smets F. et al., 2008], а затем гемопоэтические и стромальные фракции клеток костного мозга (ККМ) [Киясов А.П. и др., 2008; Kallis Y.N. et al., 2007; Burt R.K. et al., 2008; Lyra A.C. et al., 2010; Ismail A. et al., 2010; Amer M.E. et al., 2011; Stutchfield B.M. et al., 2010; Lin H. et al., 2011], обладающие высоким регенерационным потенциалом.

Между тем, внедрение в практику регенеративной медицины клеточных технологий пока не получило единодушного одобрения из-за опасности малигнизации и генетических мутаций трансплантированных стволовых клеток, а также из-за быстрой гибели или быстрого снижения активности как аутологичных, так и аллогенных клеток.

Альтернативой клинического применения биомедицинских клеточных продуктов в регенерационной медицине, включая клеточно- и тканеинженерные конструкции, могут стать технологии, основанные на создании молекулярно-инженерных конструкций, содержащих выделенный из клеток костного мозга комплекс внутриклеточных биологически активных компонентов.

Вопрос о том, какие внутриклеточные структуры и сигнальные молекулы клеток костного мозга (ККМ) способны обеспечивать «адресный перенос регенерационной информации» к поврежденным органам долго не был предметом специальных исследований.

В последние годы, однако, появилось достаточное количество обстоятельно выполненных исследований [Eldh M. et al., 2010; Dickey J.S. et al., 2011; Тишевская Н.В. et al., 2016; Бабаева А. Г. и другие, 2016], из которых следует, что продуцентами и переносчиками регенерационной информации в межклеточной сигнальной системе выступают разнообразные по своим структурным и функциональным свойствам молекулы РНК.

Начиная с 2008 г. во всём мире проводятся интенсивные исследования молекул малых белок некодирующих РНК - микроРНК, которые начали использовать не только в качестве биомаркеров, но и в качестве терапевтических средств регуляции восстановительных процессов при различных патологиях [Bartel D.P. et al., 2009]. Однако выделение какой-либо одной микроРНК с адресным эффектом для целей регенерационной терапии представляет собой сложный технологический процесс. Уже к 2015 году было идентифицировано свыше 1800 вне - и внутриклеточных микроРНК человека [Peterson S.M. et al., 2014], причём функция большинства из них остаётся неизвестной. Кроме того, вызывает сомнение возможность индукции и процесса с помощью осуществления регенерационного какой-либо выделенной микро РНК, так как уже показано, что в процессах регенерации принимают участие разные классы РНК [Yan I.K. et al., 2016], в том числе разные классы белок некодирующих РНК, например длинные некодирующие РНК – Inc RNA [Li J. et al., 2016; Li C. et al., 2017; Lauschke V.M. et al., 2016; Qiao J. et al., 2016; Huang L. et al., 2015], короткие интерферирующие РНК - siRNA [Mottaghitalab F. et al., 2017, MaH. et al., 2016], и короткие ядерные РНК [Lauschke V.M. et al., 2016].

Сравнительно недавно появилась информация, что общая РНК (оРНК), выделенная из клеток костного мозга, способна индуцировать восстановительные процессы в самом костном мозге при его повреждении (Бабаева А. Г. и др., 2016). Между тем, отсутствуют сведения, о способности общей РНК из клеток костного мозга (КМ) индуцировать восстановительные процессы в органах другого гистотипа, в том числе в печени.

Цель исследования: исследовать способность общей РНК, полученной из несортированной фракции мононуклеарных клеток костного мозга, обеспечивать адресный перенос регенерационных сигналов и стимулировать восстановительные процессы в печени при ее остром и хроническом повреждении.

Задачи исследования

- 1. Разработать протокол выделения общей РНК (оРНК) из несортированной фракции мононуклеарных клеток костного мозга (ККМ).
- 2. Используя модель адоптивного переноса, доказать способность оРНК, полученной из клеток костного мозга, осуществлять адресный перенос регенерационных сигналов в ткань повреждённой печени.
- 3. На модели острой печёночной недостаточности, созданной путем обширной резекции печени, сравнить способность клеток костного мозга и оРНК, выделенной из этих клеток, стимулировать восстановительные регенерационные процессы в повреждённой печени.
- 4. Разработать экспериментальную модель пролонгированного хронического токсического повреждения печени с развитием дисфункции и фиброзирующих процессов в ней.

5. На токсической модели хронической печеночной недостаточности, сравнить эффективность регенераторного воздействия на печень клеток костного мозга и оРНК, выделенной из этих клеток.

Научная новизна

Методом адоптивного переноса впервые доказана способность средней эффективной дозы оРНК (30 ± 5 мкг/100 г. веса животного), выделенной из клеток костного мозга, обеспечивать адресный перенос регенерационных сигналов в печень при ее повреждении.

модели Ha обширной резекции печени установлена более высокая митотическая активность гепатоцитов достоверно большая скорость восстановления массы печени при введении средней эффективной дозы оРНК по сравнению с введением клеток костного мозга в дозе (30-35) $x10^6$, используемой для выделения оРНК.

Разработана модель хронического токсического повреждения печени (ХТПП), позволяющая воссоздать и сохранить морфологические признаки цирроза печени в течение 6 месяцев путем комбинированного применения токсических доз CCl₄ в сочетании с неполным адъювантом Фрейнда.

На модели хронического токсического повреждения печени доказано, что однократное введение оРНК из клеток костного мозга в дозе $30\pm 5~{\rm mkr}/100~{\rm r}$ веса животного индуцирует восстановительные процессы в ткани печени.

Теоретическая и практическая значимость работы

Создана новая модель токсического хронического повреждения печени с развитием фиброзирующих процессов, пригодная для скрининговой оценки эффективности различных биотехнологических методов коррекции хронической печеночной недостаточности.

На экспериментальных моделях острого и хронического повреждения печени доказана функциональная эффективность оРНК как принципиально нового типа медицинского продукта для регенеративной медицины, способного обеспечить эффективную регуляцию восстановительных процессов в поврежденной печени при отсутствии рисков, возникающих в случае применения клеточных продуктов.

Основные положения, выносимые на защиту

1. Введение оРНК из клеток костного мозга от крыс-доноров с обширной резекцией печени индуцирует в организме интактных крыс-реципиентов митотическую активность и пролиферацию гепатоцитов (метод адоптивного переноса).

- 2. Введение оРНК из клеток костного мозга здорового донора животным с экспериментальной моделью острой печеночной недостаточности более интенсивно, чем клетки костного мозга в эквивалентной дозе, стимулирует восстановительные процессы в печени, что выражается достоверно более высоким уровнем митотической активности гепатоцитов и достоверно более ранним восстановлением исходной массы печени.
- 3. Введение оРНК из клеток костного мозга и клеток костного мозга в эквивалентной дозе животным с экспериментальной моделью хронического токсического повреждения печени, сопровождающегося развитием фиброза и цирроза печени, ускоряет восстановительные процессы в печени.
- 4. В отличие от клеток костного мозга, оРНК из клеток костного мозга способствует ускорению темпа фибролиза образовавшихся междольковых соединительно-тканных септ и пролиферации гепатоцитов.

Степень достоверности и апробация работы

Достоверность результатов обеспечивается четкой постановкой исследования, применением современных и адекватных методов исследования на сертифицированном оборудовании; использованием достаточного экспериментальных В животных отдельных сериях опытов экспериментальной группе; корректным применением методов статистического анализа и критической оценкой полученных результатов при сравнении с данными современной научной литературы.

Апробация работы состоялась 21 мая 2019 г. на совместной конференции научных и клинических подразделений Федерального государственного бюджетного учреждения «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Министерства здравоохранения Российской Федерации. Основные положения и результаты диссертации были доложены и обсуждены на III Национальном конгрессе «Трансплантация и донорство органов» (Москва, 2–4 октября 2017 г.); III Национальном конгрессе по регенеративной медицине (Москва, 15-18 ноября 2017 г.); Sechenov International Biomedical Summit 2018 (Моском, Мау 21-23, 2018); на IX Всероссийском съезде трансплантологов, 16–19 сентября 2018 года.

Связь работы с научными программами, планами, темами

Диссертационная работа выполнялась в рамках государственного задания Минздрава России на проведение научных исследований и разработок по теме: «Создание и исследование экспериментальных моделей молекулярно-инженерной конструкции для регенерации поврежденных органов и тканей» (2018 - 2020 гг.), регистрационные номера: НИОКТР AAAA-A18-118012390461-0 и ИКРБС 056-00086-18-00.

Внедрение результатов исследования в практику

Результаты исследования внедрены в отдел биомедицинских технологий и тканевой инженерии Федерального государственного бюджетного учреждения «Нашиональный медицинский исследовательский центр трансплантологии имени академика В.И. Шумакова» Министерства искусственных органов здравоохранения Российской Федерации, а также в образовательный процесс кафедры трансплантологии и искусственных органов лечебного факультета Федерального государственного автономного образовательного учреждения высшего образования «Первый Московский государственный медицинский университет имени И.М. Сеченова» Министерства здравоохранения Российской Федерации (Сеченовский Университет).

Личный вклад автора

Автор принимала непосредственное участие в постановке цели и задач исследования, участвовала в разработке концепции и в составлении плана экспериментальных исследований. Самостоятельно создавала модель адоптивного переноса, а также модели острой и хронической печеночной недостаточности, разработала протокол выделения оРНК из клеток костного мозга. Проводила сбор материала по сравнительному исследованию эффективности индукционного воздействия клеток костного мозга и оРНК из клеток костного мозга на регенерационные процессы в печени. Автором самостоятельно сформирована база данных, проведена статистическая обработка, анализ и интерпретация полученных результатов.

Публикации по теме диссертации

По теме диссертации опубликовано 6 научных работ, из них 2 статьи в рецензируемых журналах, рекомендованных ВАК РФ. Получено 3 патента РФ на изобретения.

Объем и структура диссертации

Диссертация состоит из введения, обзора литературы, главы, посвященной материалам и методам исследования, результатов собственных исследований, обсуждения полученных результатов, заключения, выводов, практических рекомендаций и списка литературы, включающего 185 источников, в том числе 25 отечественных и 160 зарубежных. Работа изложена на 118 страницах машинописного текста, иллюстрирована 16 рисунками, содержит 7 таблиц.

СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы исследований

Работа выполнена на 453 крысах-самцах породы Вистар весом 250-300 г, содержащихся на смешанном рационе питания со свободным доступом к воде. При планировании экспериментов на животных руководствовались биоэтическими принципами обращения с животными, утверждёнными Европейской конвенцией о защите позвоночных животных, используемых для экспериментов или в иных научных целях (2005 г.), и в соответствии с Правилами лабораторной практики, утверждёнными приказом Минздрава России №708 от 23.08.2010г. Все манипуляции с животными проводили в утренние часы с 10-12 часов, когда собственный ритм митотической активности у крыс минимален.

Для решения поставленных задач были созданы 3 экспериментальные модели: модель адоптивного переноса, модель острой печеночной недостаточности и модель хронического токсического повреждения печени с формированием цирроза печени.

На отработку экспериментальных моделей острой печеночной недостаточности и хронического токсического повреждения печени, а также на разработку технологии выделения оРНК из ККМ израсходована 101 крыса. Этот раздел работы включал методики выделения ККМ (n=10) и получения оРНК из ККМ (n=25); нахождение средней эффективной дозы оРНК (n=16), модель острой печеночной недостаточности (ОПН), n=20; модель хронического токсического повреждения печени (n=30). Исследования, в которых выявлялась регенерационная активность оРНК из ККМ и ККМ, состояли из 3 серий экспериментов на 352 крысах.

Разработка протокола выделения оРНК из ККМ

Для проведения сравнительного анализа регенерационной активности ККМ и оРНК из ККМ в 3 экспериментальных сериях нами была предварительно отработана технология и протокол выделения оРНК из ККМ. оРНК из ККМ выделяли методом, разработанным фирмой «Евроген» (Россия) с помощью реактива Extract RNA, который позволял получать из каждых 30-35х10⁶ клеток около 148,5±22,3 мкг оРНК. Далее из этого концентрированного раствора РНК готовили рабочие растворы РНК, требуемой концентрации для введения в организм животного. Эффективная доза оРНК колебалась от 15 мкг/100г. веса, до 60 мкг/100г. веса и в исследуемых сериях экспериментов она составляла в среднем 30±5 мкг/100г. веса животного (при определении эффективной дозы оРНК использовали метод адоптивного переноса разных доз оРНК – 15, 30, 45 и 60 мкг/100г веса животного и в срезах печени крысреципиентов через 48 ч. определяли митотический индекс – МИ, см. ниже)

Создание экспериментальных моделей для изучения регенерационной активности оРНК

Выполнение этих моделей у крыс проводили под ингаляционным наркозом диэтиловым эфиром с соблюдением правил асептики и антисептики.

Модель острой печеночной недостаточности (ОПН) - обширная резекция печени (ОРП) использовали для сравнительного изучения регенерационной активности ККМ и оРНК из ККМ.

Для этого вскрывали брюшную полость, выводили печень в рану и последовательно накладывали лигатуры на основания срединной, левой боковой и правой верхней долей печени, после чего их удаляли (всего 70-75% общей массы печени). Работу выполняли на крысах-самцах породы Вистар (n=175), у 75 из которых воспроизводили модель ОРП.

Все животные после ОРП были разделены на три группы; 1 группа - контрольная (n=25) без применения терапии (только введение физиологического раствора); опытная группа 2 (n=25), в которой через 3-5 часов после ОРП внутрибрющинно однократно вводили оРНК из ККМ здоровых крыс-доноров. оРНК применяли в дозе 30 мкг/100г веса животного для ранней активации восстановительных процессов в резецированной печени; опытная группа 3 (n=25), в которой через 3-5 часов после ОРП внутрибрющинно однократно вводили ККМ в дозе 30-35,0х10⁶ клеток на крысу.

Эффективность индукционного воздействия оРНК на процессы восстановительной регенерации печени после ОРП оценивали по митотической и пролиферативной активности гепатоцитов в резецированной печени через 24, 36, 48 и 72 часа, по концентрации общего белка, общего билирубина и печёночных ферментов цитолиза (АлАТ, АсАТ и ЩФ) на 5, 7 и 10 сутки после ОРП и по увеличению массы резецированной печени в течение 28 сут.

Модель адоптивного переноса была использована для доказательства способности оРНК к адресному переносу регенерационной информации в поврежденную печень.

Донорами оРНК и ККМ при моделировании адоптивного переноса служили крысы с обширной резекцией печени (описание техники приведено выше). Через 12 ч. после моделирования ОРП, когда в КМ прооперированных крыс-доноров (n=10) появлялись морфогенетически активные клетки, у животных забирали свежевыделенные ККМ и исследовали их приобретенную способность к адоптивному переносу в 3 группах опытов с интактными крысами реципиентами. Контролем служили интактные крысы с введением 1,0 мл физиологического раствора- ФР (группа 1, n=5). В группе 2 (n=10) из свежевыделенных проактивированных ККМ выделяли оРНК и вводили её внутрибрюшинно интактным крысам в дозе 30±5 мкг/100 г. веса животного. В

группе 3 (n=12) внутрибрюшинно вводили проактивированные ККМ в дозах $(2.5 \times 10^6; 5 \times 10^6; 3.5 \times 10^7)$ на крысу). В печени и в почках реципиентов (для доказательства адресности переноса регенерационных сигналов) изучали митотическую и пролиферативную активность гепатоцитов и канальцевого эпителия на различных сроках (12, 24, 36, 48, 72 ч.) после введения ККМ и общей РНК, выделенной из ККМ.

Модель хронического токсического повреждения печени (ХТПП) была разработана для сравнительного изучения эффективности корригирующего воздействия ККМ и оРНК из ККМ. Модель ХТПП, характеризующаяся развитием фиброза и цирроза ткани печени, создавали путем дробного подкожного введения крысам 60% масляного раствора ССІ₄ в сочетании с неполным адъювантом Фрейнда по разработанной нами схеме. В процессе моделирования погибло 25 животных и к концу затравки выжило 75 животных. Все выжившие крысы, были разделены на 3 группы: группа 1, контрольная (n=25) с однократным введением ФР через 7 сут. после моделирования ХТПП, опытная группа 2 (n=25) - через 7 сут. после моделирования ХТПП внутрибрюшинно однократно вводили оРНК из ККМ здорового животного в эффективной дозе 30 мкг/100 гр. веса животного; опытная 3 группа (n=25) — через 7 сут. после окончания моделирования ХТПП вводили ККМ в дозе 30,0-35,0х10⁶ кл. Контроль состояния восстановительных процессов в печени осуществляли: через неделю после окончания моделирования ХТПП, а также через 3, 6 и 9 мес.

Методы исследования

Морфометрические методы контроля пролиферативной активности гепатоцитов. В 30 полях зрения определяли количество митотически делящихся гепатоцитов, а затем рассчитывали митотический индекс (МИ) в промилле (‰) на разных сроках после выполнения обширной резекции печени. Выраженность пролиферативной активности гепатоцитов оценивали также иммуногистохимически с помощью антител Ki-67, являющихся маркерами ядерного антигена пролиферирующих клеток, и путём подсчёта общего количества гепатоцитов в исследуемых полях зрения.

Определение массы печени как восстановительной показателя регенерации печени. У каждого оперированного животного сразу после обширной резекции взвешивали резецированную часть печени, принимали за 70% от общей массы печени; затем на основании этих измерений рассчитывали исходную массу печени для каждого животного. Далее на каждом исследуемом сроке иссекали остаток оставшейся печени, путём взвешивания определяли его массу и сравнивали её с рассчитанной исходной массой печени для данного животного.

Биохимические методы. Стандратными биохимическими методами в сыворотке крови оперируемых животных исследовали содержание ферментов цитолиза гепатоцитов: аланин — аминотрансферазы (АлАТ), аспарагин — аминотрансферазы (AcAT) и щелочной фосфатазы (ЩФ), а также содержание общего белка и общего билирубина для характеристики тяжести печеночной недостаточности и контроля сроков восстановления печеночного гомеостаза.

Гистологические исследования. Кусочки печени размером 3х4х5 мм фиксировали в 10% забуференном растворе формалина, после стандартной проводки заливали в парафин, далее готовили срезы толщиной 5-7 мкм, которые окрашивали гематоксилином и эозином и по Массону. Анализ результатов проводили с помощью микроскопа (Nikon H600L Япония).

Статистическая обработка полученных результатов. Статистическую обработку результатов производили на персональном компьютере с использованием специального статистического пакета Biostat; достоверность различий между сравниваемыми группами оценивали по критерию t-Стьюдента с учетом поправки Бонферонни. В таблицах приведены средние значения величин, где \pm стандартное отклонение (SD). Различия считали достоверными при p<0,05 (Статистический пакет рекомендованный BO3 EpiInfo 5.0).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Исследование способности оРНК из клеток костного мозга осуществлять адресный перенос регенерационных сигналов при повреждении печени

Способность оРНК к адресному переносу регенерационных сигналов исследовали на модели адоптивного переноса в 3 группах опытов. В группе 1 контроль (введение физиологического раствора) на всех исследуемых сроках достоверные изменения митотической активности гепатоцитов в печени и крыс-реципиентов канальцевого эпителия почках У не оперированных отсутствовали, также как и в группе 3 (введение, ККМ) при введении разных доз активированных ККМ. Однако, в отличие от группы 1 в группе 3 на сроках 48 и 72 ч. при введении разных доз клеток было обнаружено появление в ткани печени реципиента только клеточной инфильтрации (рисунок 1А), свидетельствующей о появлении в организме не оперированных реципиентов гепатоспецифических сигналов.

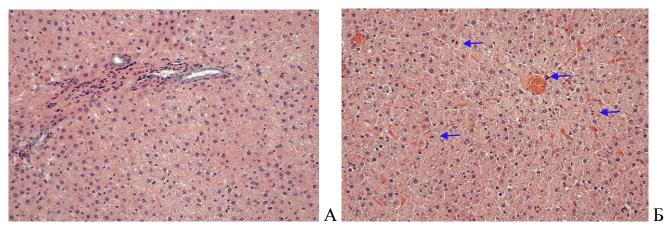


Рисунок 1 - Сравнительная гистологическая картина печени здоровой крысыреципиента через 48 ч. после введения донорского материала от крысы с 70% гепатэктомией: A — после введения несортированных мононуклеарных клеток костного мозга $(35,0x10^6 \text{ кл.})$. Умеренная лимфоидно - клеточная инфильтрация. Митозов нет; и E — после введения оРНК из несортированных мононуклеарных клеток костного мозга (30 мкг/100 г). Пролиферативная активность гепатоцитов в печени. Митозы в паренхиме печени (указаны стрелками). Окраска гематоксилином и эозином, ув. x 200

Достоверное увеличение митотической активности гепатоцитов в печени здоровых крыс-реципиентов и его последующее снижение было выявлено нами только в группе 2 на сроках 48 и 72 ч., где МИ составил $0.7\pm0.2\%$ (митозы выявлялись в 5-7 из 30 исследуемых полей зрения) и $0.5\pm0.2\%$ (митозы выявлялись в 3-4 из 30 исследуемых полей зрения) соответственно, при р < 0.05 по сравнению с исходным уровнем (рисунок 1Б). Кроме того, важно отметить, что в группе 2 с

введением оРНК так же, как и в группе 3, на сроках 48 и 72 ч. в ткани печени также диагностировалась клеточная инфильтрация. Примечательно, что рост митотической активности гепатоцитов в печени именно через 48 ч. был отмечен и другими исследователями в опытах с выполнением у животных истинной субтотальной резекции печени (Ельчанинов А.В. и др., 2016). Между тем, в почках крыс-реципиентов группы 2 на сроках 48 и 72 ч. достоверного повышения митотической активности клеток почечного эпителия выявлено не было.

При исследовании пролиферативной активности гепатоцитов в группе 2 было установлено также, что в гистологических препаратах на этом сроке, по сравнению с контролем (группа 1), определяется достоверно большее количество молодых гепатоцитов (клетки малого размера) - $452\pm7,66$ против $320\pm36,13$ (р < 0,05), которые располагаются преимущественно по периферии печёночной дольки.

Иммуногистохимический анализ с помощью маркера Кі67 также подтвердил, что на сроке 48 ч. пролиферативная активность клеток существенно возрастала в печени крыс группы 2 (рисунок 2А и Б), но на сроке 72 ч. пролиферативная активность снижалась аналогично митотической активности. Возможно, что спад митотической и пролиферативной активности гепатоцитов через 72 ч. после введения оРНК наступает в результате активации к этому сроку той популяции информации, которая переносчиков обладает супрессорными лимфоцитовсвойствами. Было показано [Бабаева А.Г. и др., 2009], что индукция этих клеток возникала при переносе морфогенетически активных ККМ. Не исключено также, что спад митотической активности может быть связан с наступающей к этому сроку элиминацией индукционных (регенерационных) факторов оРНК из организма крыс-реципиентов, молекул, Т.К. В роли обеспечивающих информационный обмен, выступают различные типы РНК, которые доставляются в очаг повреждения с помощью лимфоцитов [Тишевская Н.В. и др., 2016, Тишевская Н.В. и др., 2015, Бабаева А.Г. и др. 2016].

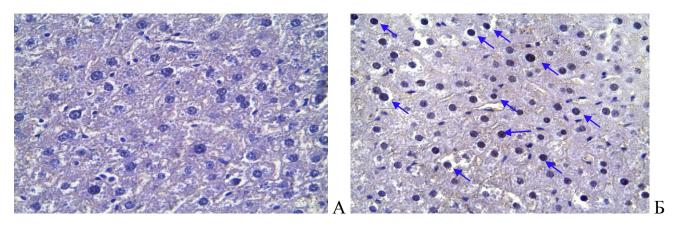


Рисунок 2 - Сравнительная гистологическая картина экспрессии Ki 67 в печени здоровой крысы-реципиента через 48 ч: A — после введения физ. раствора (контроль) и E — после введения оРНК из KKM-донора с 70% гепатэктомией. Иммуногистохимическое исследование. Многочисленные позитивно окрашенные гепатоциты. Ув. x 400.

Индукция митотической и пролиферативной активности именно гепатоцитов в печени не оперированных реципиентов после введения им общей РНК из активированных мононуклеарных ККМ крыс с 70-75 % гепатэктомией указывают на тот факт, что активированные ККМ не только воспринимают, аккумулируют и формируют тканеспецифические регенерационные сигналы, но и способны реализовать их адресную доставку с помощью общей РНК, после выделения её из этих клеток.

Сравнительное исследование способности клеток костного мозга и оРНК из клеток костного мозга индуцировать восстановительные процессы в печени при моделировании острой печеночной недостаточности

Все крысы были разделены на 3 группы: группа 1 (n=25) — контроль, введение физиологического раствора (Φ P) через 3-5 ч. после моделирования ОПН; опытные группы 2 (n=25) и 3 (n=25), введение через 3-5 ч. после моделирования ОПН эффективных доз оРНК из ККМ и ККМ соответственно.

Из 25 крыс контрольной группы погибло 5 животных в течение первых 5 суток после резекции печени (общая летальность составила 20%). Во 2 (n = 25) и 3 (n = 25) опытных группах (введение оРНК и ККМ, соответственно) летальность отсутствовала в течение всего срока наблюдения. Отсутствие летальности в этих группах сопровождалось более высоким темпом восстановления печёночного гомеостаза в организме, что выражалось в более ранней нормализации показателей общего белка и цитолитических ферментов в сыворотке крови (таблицы 1-3).

Таблица 1 - Динамика изменения общего белка, общего билирубина и ферментов цитолиза клеток печени (АлАТ, AcAT и ЩФ) в группе 1 (контроль, n=20) при введении Φ P после Θ PП

Сроки наблюдения	AcAT	АлАТ	ЩФ	Билирубин	Белок
(сутки)				общий	общий
Исход	58±8	40±6	240±24	0,0±1,67	98±20
2	570±29*	310±10*	1102±21*	10,2±2*	21±16*
3	490±20*	320±21*	1009±29*	12,3±1,5*	24±11*
5	420±27*	290±18*	982±22*	10,8±1,3*	36±13*
7	360±24*	282±15*	893±24*	9,0±1,9*	41±9*
10	299±22*	269±18*	760±24*	8,3±2*	45±6*
14	220±16*	241±13*	640±20*	6,5±1*	51±7*

^{*}p < 0.05 по сравнению с исходным уровнем

Таблица 2 - Динамика изменения общего белка, общего билирубина и ферментов цитолиза клеток печени (АлАТ, AcAT и ЩФ) в группе 2 (n=25) при введении оРНК в дозе 30 мкг/100г веса после ОРП

Сроки наблюдения	AcAT	АлАТ	ЩФ	Билирубин	Белок
(сутки)				общий	общий
Исход	58±8	40±6	240±24	$0,0\pm1,67$	98±20
2	323±20*	76±17*	887±30*	6,9±1,3*	48±17*
3	293±18*	88±18*	632±28*	6,5±1,2*	52±16*
5	238±19*	78±19*	460±32*	5,1±1,1*	57±16*
7	115±11*	69±6*	346±26*	3,1±1*	60±7*
10	82±12*	58±16	257±15	2,7±0,9*	68±8*
14	66±7	44±6	230±14	1,9±0,8	84±12

^{*}p < 0.05 по сравнению с исходным уровнем

Таблица 3 - Динамика изменения общего белка, общего билирубина и ферментов цитолиза клеток печени (АлАТ, АсАТ и ЩФ) в группе 3(n=25) при введении ККМ в дозе $30-35x10^6$ клеток после $OP\Pi$

Сроки наблюдения	AcAT	АлАТ	ЩФ	Билирубин	Белок
(сутки)				общий	общий
Исход	58±8	40±6	240±24	0,0±1,67	98±20
2	350±10*	122±27*	910±17*	8±2*	36±16*
3	340±12*	119±16*	670±15*	7,1±1,8*	45±10*
5	290±15*	102±21*	486±16*	6,8±1,0*	51±18*
7	150±23*	97±15*	370±13*	4,3±1,3*	54±8*
10	100±12*	79±6*	310±19*	2,9±0,6*	65±5*
14	70±9	61±5*	250±12	2,3±0,2*	88±7

^{*}p < 0.05 по сравнению с исходным уровнем

В группе 2 (Таблица 2), нормализация исследуемых показателей ферментов цитолиза в крови наступала к 10 – 14 суткам, тогда как в контрольной группе нормализации не наступало до 14 суток (Таблица 1). Восстановление уровня общего белка в сыворотке крови также происходило в более высоком темпе по сравнению с контрольной группой.

В группе 3 (Таблица 3), исследуемые показатели изменялись аналогично тем, которые имели место в группе 2: показатели цитолиза нарастали в течение первых 3 суток, затем стабилизировались и восстанавливались к 10-14 суткам Сниженный уровень общего белка после ОРП также восстанавливался к концу срока наблюдений (14 сут.).

Рост митотической активности гепатоцитов в резецированной печени через 48 ч. после моделирования ОРП наблюдали во всех трех группах по сравнению с исходным уровнем, при котором митотическая активность, оцениваемая до резекции печени по митотическому индексу (МИ), составила 0,2-0,3 промилле % - 1-2 митоза на 30 полей зрения. Однако степень активации митотической активности в исследуемых группах была разной. В группе 1 (контроль) значение МИ равно 5,378% (на 6693 клетки определялось 36 митозов), в группе 2 - 23,45 % (на 9678 клеток определялось 227 митозов, в группе 3 - 6,96% (на 8448 клеток определялось 60 митозов).

Через 72 ч. после моделирования ОРП уровень МИ во всех группах оставался на более высоком уровне по сравнению с исходным, но уменьшился по сравнению с 48 ч. (рисунок 3).

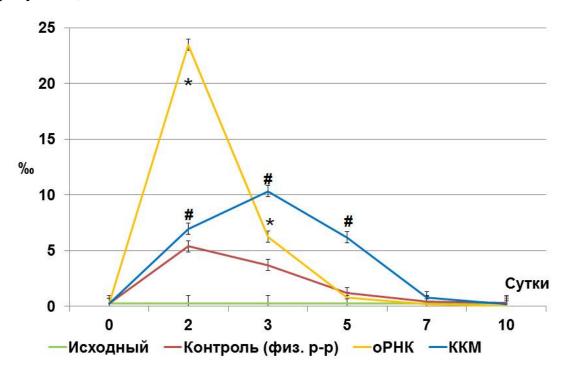


Рисунок 3 - Динамика изменения митотического индекса в печени крыс после ОРП: в контрольной группе, в группе с введением оРНК и в группе с введением ККМ * p<0,05 по сравнению с 1-ой контрольной группой; # p<0,05 по сравнению с группами 1 и 2

Моделирование ОРП во всех группах животных стимулировало повышение митотической активности гепатоцитов, однако в группе 2 при введении оРНК она была наиболее выраженной и более ранней (на сроке 48 ч.) по сравнению с 3 группой. Более высокую митотическую активность клеток печени через 48 ч. после ОРП в группе 2 иллюстрирует рисунок 4.

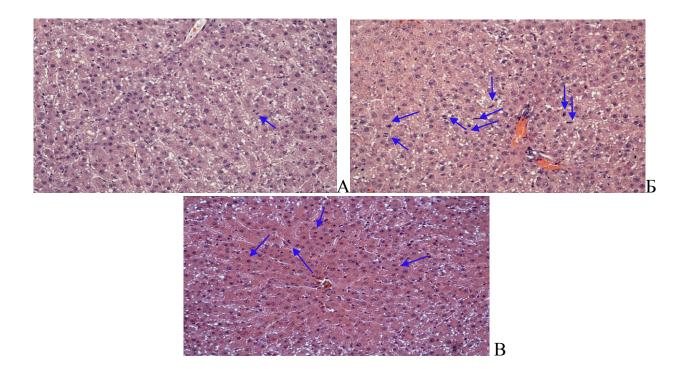


Рисунок 4 - Митотическая активность гепатоцитов печени крыс через 2 суток после $OP\Pi$ в исследуемых группах: A — контроль (ΦP) , B — группа 2 (oPHK), B — группа 3 (KKM). Гематоксилин и эозин, ув. х 200. Стрелками указаны митотически делящиеся клетки

Это нашло отражение в ускоренном темпе восстановления массы печени после ОРП у животных группы 2.

ДИНАМИКА ВОССТАНОВЛЕНИЯ МАССЫ ПЕЧЕНИ

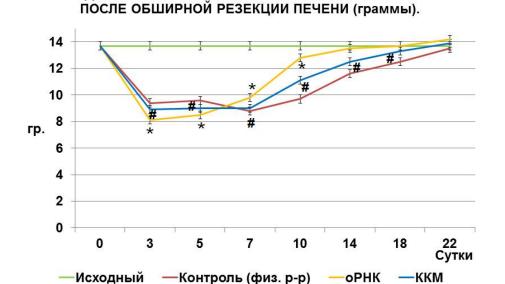


Рисунок 5 - Динамика изменения массы печени крыс после ОРП в опытных группах. Обозначения: p < 0.05 по сравнению с контролем; p < 0.05 по сравнению с группами p < 0.05 по сравнению p <

На рисунке 5 представлена динамика восстановления массы печени в трех исследуемых группах.

Наиболее высокий темп восстановления массы печени отмечался в группе 2, где через 3-5 ч. после ОРП внутрибрюшинно вводили оРНК (восстановление массы печени происходило к 10-12 суткам), см. рис. 5. Введение ККМ также ускоряло восстановительные процессы в резецированной печени и восстановление исходных значений массы печени происходило к 14-18 суткам. В контрольной группе опытов восстановление массы печени наблюдали на 18-22 сутки после ОРП.

Таким образом, введение оРНК в дозе 30 мкг/100г веса животного вызывает наиболее активный регенераторный ответ. Эквивалентное количество введенных ККМ также способствует ускорению восстановительных процессов, но они протекают в более замедленном темпе.

Сравнительное исследование способности оРНК из клеток костного мозга и клеток костного мозга осуществлять коррекцию гомеостаза и структурных нарушений в ткани печени при моделировании хронического токсического повреждения печени

Различия в структуре ткани печени в контрольной и опытных группах в этой серии опытов оценивали по степени выраженности фибролитических процессов в соединительной ткани, а также по степени выраженности количества молодых новообразованных гепатоцитов в структуре печеночной дольки на одинаковых сроках. Параллельно исследовали состояние показателей функции печени. Было установлено, биохимические что такие показатели функционального состояния печени в сыворотке крови крыс как АлАТ, АсАТ, ЩФ были нарушены в исследуемых группах только в течение 1 месяца после завершения моделирования хронического токсического повреждения печени (ХТПП). Показатели синтетической функции печени (общий белок) оставались нарушенными в течение более длительного времени: в контроле в течение 6 месяцев, а в группах 2 и 3 в течение 3 месяцев, но постепенно нормализовались к концу наблюдения (8-9 мес.).

Изучение динамики развития морфологических изменений в печени при моделировании ХТПП показало, что через 1 неделю у всех крыс после окончания затравки в перицентральных зонах печени выявляются выраженные некротические и дистрофические изменения гепатоцитов, а также нарушения дольковой и балочной структуры ткани печени.

Через 3 месяца у крыс контрольной группы выявляется четкое нарушение балочного строения печеночной ткани и формирование ложных долек; то есть уже к 3 месяцу после моделирования ХТПП в печени крыс контрольной группы формируется гистологическая картина цирроза (рисунок 6 A). В то же время у

крыс опытной группы, которым вводили оРНК, на сроке 3 месяца на фоне сформировавшегося цирроза появляются отчетливые признаки фибролиза септ, и образовавшихся ложных долек. Кроме того, в структуре ложных долек выявляются значительные участки молодых (новообразованных) гепатоцитов (рисунок 6 Б).

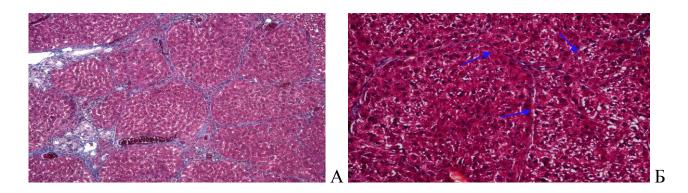


Рисунок 6 - Гистологическая структура печени крысы через 3 мес. после ХТПП и: А -введения физиологического раствора -контроль ув.х100; Б-введения оРНК в дозе 30 мкг/100г веса животного, ув.х200. Окраска по Массону Стрелками указаны зоны лизированных септ и участки скопления молодых гепатоцитов

Полученные нами данные свидетельствуют о том, что оРНК к 3 месяцам тормозит процессы фиброгенеза в печени по сравнению с контролем, где процессы склерозирования отчетливо выражены. Однако на 3 месяце в этой группе, как и в контрольной группе, сохраняются ложные дольки и нарушение балочной структуры печени. Между тем, гистологическая картина ткани печени в группе с применением ККМ на 3 месяце после окончания затравки не отличалась от контроля.

Через 6 месяцев в печени крыс контрольной группы появляются участки спонтанного лизирования септ ложных долек и зоны молодых гепатоцитов (рисунок 7 А). Аналогичные структурные изменения в печени были отмечены к этому сроку и в группе 3, где вводили ККМ. В тоже время в печени крыс группы 2, с применением оРНК к 6 месяцу после моделирования ХТПП, наступает полное восстановление гистологической структуры печени (рисунок 7 Б).

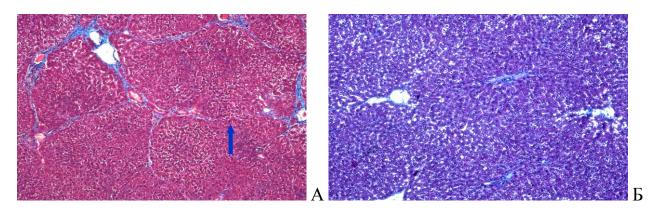


Рисунок 7 - Гистологическая структура печени крысы через 6 мес. после окончания моделирования ХТПП и введения: А - физиологического раствора, контроль, окраска гематоксилином и эозином; Б - оРНК из ККМ окраска по Массону. Стрелками указаны участки фибролиза септ. Ув.х100

К 9 месяцу после хронической затравки крыс структура ткани печени в контрольной группе и группе 3 также нормализуется, что свидетельствует о большом внутреннем регенеративном потенциале печени, хотя местами сохраняются участки соединительно-тканных септ. Из сравнительного анализа темпа восстановительных процессов в ткани печени следует, что только введение оРНК из ККМ сокращает сроки восстановления структуры ткани поврежденной печени. Проведенные исследования позволяют прийти к заключению, что оРНК из ККМ здорового донора может быть использована в качестве альтернативного средства инициирующего ускорение темпа восстановительной регенерации этого органа как при ОПН, так при и ХТПП.

ВЫВОДЫ

- 1. Разработан протокол технологии выделения оРНК из клеток костного мозга и установлена прямая зависимость содержания оРНК от количества клеток костного мозга.
- 2. Методом адоптивного переноса выявлена способность оРНК к адресному переносу регенерационных сигналов и установлена средняя эффективная доза оРНК из клеток костного мозга (30±5 мкг/100 г веса животного), которая индуцирует в организме интактных крыс-реципиентов митотическую активность и пролиферацию гепатоцитов при введении оРНК из клеток костного мозга от крыс-доноров с обширной резекцией печени. Способность активированных частичной гепатэктомией клеток костного мозга осуществлять адресный перенос регенерационных сигналов в ткань печени интактных крыс не была выявлена в исследуемых сроках.
- 3. На модели обширной резекции печени проведен сравнительный анализ способности оРНК из клеток костного мозга и клеток костного мозга стимулировать восстановительные регенерационные процессы в поврежденной печени. Показано, что при введении животным средней эффективной дозы оРНК из клеток костного мозга наблюдаются достоверно более высокие значения митотического индекса гепатоцитов и сокращаются сроки восстановления массы печени до исходного уровня по сравнению с введением клеток костного мозга в дозе 30-35 x10⁶, используемой для выделения средней эффективной дозы оРНК.
- 4. Созданная модель хронического токсического повреждения печени путем комбинированного использования токсических доз CCl_4 и неполного адъюванта Фрейнда позволяет воспроизвести и сохранить морфологические признаки цирроза печени в течение 6 месяцев.
- 5. Введение средней эффективной дозы оРНК из клеток костного мозга животным с хроническим токсическим повреждением печени достоверно ускоряет темп дефиброзирования и восстановления структуры ткани печени по сравнению с контролем. При введении клеток костного мозга ускорение темпа дефиброзирования печени в этой модели не было обнаружено.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. При выборе способа регуляции восстановительных регенерационных процессов в поврежденной печени предпочтение следует отдавать не клеткам костного мозга, а оРНК, выделенной из них.
- 2. Для регуляции восстановительных процессов в поврежденной печени оРНК может быть использована в средней эффективной дозе 30 мкг/100 г веса, что обеспечивает высокий темп восстановления структуры, функции и массы печени.
- 3. Созданная модель хронического (фиброзирующего) повреждения печени может быть использована для скриннинговой оценки эффективности различных биомедицинских методов коррекции хронической печеночной недостаточности.

Список работ, опубликованных по теме диссертации

- 1. <u>3.3. Гоникова</u>, А.О. Никольская, Л.А. Кирсанова, М.Ю. Шагидулин, Н.А. Онищенко / Сравнительная оценка морфорегуляторного потенциала клеток костного мозга и выделенного из них комплекса биологически активных компонентов методом адоптивного переноса. // Материалы III Национального Конгресса «Трансплантация и донорство органов», 2—4 октября 2017 года, г. Москва. Вестник трансплантологии и искусственных органов. 2017. т. XIX. (Приложение). С. 205.
- 2. <u>3.3. Гоникова</u>, А.О. Никольская, Н.А. Онищенко, В.И. Севастьянов / Использование метода адоптивного переноса для сравнительной оценки морфорегуляторного потенциала клеток костного мозга и выделенного из них комплекса биологически активных компонентов. // Материалы III Национального конгресса по регенеративной медицине (Москва, 15-18 ноября 2017 г.). Гены & Клетки. 2017. XII (3). С.72-73.
- 3. Z.Z. Gonikova, A.A. Nikolskaya, L.A. Kirsanova, M.Y. Shagidulin, N.A. Onishchenko, V. I. Sevastianov / Features of the influence of total RNA from mononuclear BMCS on the damaged liver recovery processes. // Sechenov International Biomedical Summit 2018 (21.05 23.05.2018, Moscow, Russia). Abstracts book. 2018. P.24.
- 4. <u>3.3. Гоникова</u>, А.О. Никольская, Л.А. Кирсанова, Н.А. Онищенко, В.И Севастьянов / Исследование регенераторной и тканеспецифичной активности общей РНК клеток костного мозга. // Вестник трансплантологии и искусственных органов. 2018. Т.ХХ (3). С.64-69.
- 5. <u>3.3. Гоникова</u>, А.О. Никольская, Л.А. Кирсанова, М.Ю. Шагидулин, Н.А. Онищенко, В.И. Севастьянов / Общая РНК из мононуклеарной фракции ККМ индуцирует процессы восстановительной регенерации в повреждённой печени. // Материалы IX Всероссийского съезда трансплантологов, 16–19 сентября 2018 года, г. Москва. Вестник трансплантологии и искусственных органов. 2018. Т. XX (Приложение). С. 144.
- 6. <u>3.3. Гоникова</u>, А.О. Никольская, Л.А. Кирсанова, М.Ю. Шагидулин, Н.А. Онищенко, В.И. Севастьянов / Сравнительный анализ эффективности стимуляции процессов регенерации печени клетками костного мозга и общей РНК этих клеток. // Вестник трансплантологии и искусственных органов. 2019. Т.ХХІ (1). С.113-121.

Патенты

- 7. А.О. Никольская, <u>3.3. Гоникова</u>, Л.А. Кирсанова, М.Ю. Шагидулин, Н.А. Онищенко, В.И. Севастьянов / Способ моделирования спонтанно необратимого повреждения печени. // Патент РФ № 2633296.- дата регистрации 11.10.2017 год заявка № 2016140690 от 17.10.2016.
- 8. Н.А. Онищенко, А.О. Никольская, <u>3.3. Гоникова</u>, Л.А. Кирсанова, М.Ю. Шагидулин, В.И. Севастьянов / Способ коррекции печеночной недостаточности в эксперименте. // Патент РФ № 2650209.- дата регистрации 11.04.2018 год заявка на изобретение №2017128290 от 08.08.2017.
- 9. А.О. Никольская, <u>3.3. Гоникова</u>, Л.А. Кирсанова, М.Ю. Шагидулин, Н.А. Онищенко, В.И. Севастьянов / Применение суммарной рибонуклеиновой кислоты (РНК) из мультипотентных мезенхимальных стромальных клеток костного мозга млекопитающих в качестве средства для коррекции печеночной недостаточности. // Патент РФ № 2655761.- дата регистрации 29.05.2018 год заявка №2017128292 от 08.08.17.

Список сокращений

ККМ - клетки костного мозга

оРНК - общая рибонуклеиновая кислота

ХТПП - хроническое токсическое повреждение печени

ОПН - острая печеночная недостаточность

МИ – митотический индекс

ОРП - обширная резекция печени

АлАТ-аланин – аминотрансфераза

АсАТ- аспарагин – аминотрансфераза

ЩФ - щелочная фосфатаза

ФР - физиологический раствор